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COMMENT 

Operator content of the multicritical magnetic hard-square 
model 

Doochul Kim, Je-Young Choi and Kyunghoon Kwon 
Department of Physics, Seoul National University, Seoul 151-742, Korea 

Received 19 February 1988 

Abstract. The transfer matrix spectra of the magnetic hard squares along the multicritical 
line are analysed using the data for the strip width N up to 12. The operator content of 
the model is exactly the same as that of the Ashkin-Teller model. When N is odd, the 
spectrum is accounted for by the continuum theory in which the antiperiodic boundary 
condition is imposed to one of the Ising variables of the Ashkin-Teller model. 

The magnetic hard-square (MHS) model is a lattice gas of Ising spins on the square 
lattice with nearest-neighbour exclusions. (Pearce 1985, 1987). The spin variable at 
each site takes the value 0 or *l according to whether the site is unoccupied or occupied 
with the corresponding sign of the spin. The Boltzmann factor of a face is given by 

W (  a, b, c, d )  = 
exp{l(a2c2+ b2d2) + K(ac+  b d ) } ~ ( ~ ~ + ~ ~ + ~ ~ + ~ ~ ) ’ ~  

ab = bc= cd = da = O  ( 1 )  I otherwise 

where a, b, c and d are the four spins on a face taken in anticlockwise order, L ( K )  
is the diagonal lattice-gas (spin) interaction and z is the fugacity. Pearce (1985) 
obtained the free energy for the anisotropic version of the model in the thermodynamic 
limit on certain manifolds in the thermodynamic space. The so-called TII manifold 
for the isotropic model is a line of multicritical points parametrised by A for OS A =s 
21~13 and is given by 

tanh K = sin(iA)/sin A 

exp(-L) = cosh K (tanh K ) 2  (2) 
z = (tanh K)4. 

Recently, Pearce and Kim (1987, hereafter referred to as I) found numerically that 
this multicritical line is characterised by the c = 1 central charge and is associated with 
the continuously varying exponents (Cardy 1987). 

The thermal exponent XT is given by 

XT=2/9(1 -A/v). (3) 
The MHS model has the same symmetry as the Ashkin-Teller (AT) model and its first 
few scaling dimensions accurately determined in I are identical in form to those of 
the AT model. The partition function of a conformally invariant system on a finite 
torus is determined by the operator content of the transfer matrix (Cardy 1986). The 
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full operator content of the AT model has since been obtained by Baake et a1 (1987), 
Yang (1987) and Saleur (1987). 

In this comment, we extend the identification of the M H S  transfer matrix spectra 
to higher levels and show that the operator content of the multicritical M H S  model is 
exactly the same as that of the AT model. We also show that the M H S  model on a strip 
with periodic boundary conditions but with an odd number of sites across the strip 
corresponds to the AT model in which the antiperiodic boundary condition is imposed 
to one of its spin variables. This is not surprising since lattice gases on a square lattice 
with strong nearest-neighbour repulsion can be mapped into antiferromagnetic Ising 
models in fields and an antiferromagnetic Ising model on a cylinder is the same as a 
ferromagnetic model with a seam of antiferromagnetic bonds when the number of 
spins around the cylinder is odd. 

In I, the transfer matrix of the M H S  model is diagonalised for the strip width N 
up to 10 and the results are used to solve the inversion identity for higher N. In this 
work, we use the transfer matrix spectra for N =s 12 for further identification of the 
levels. The normalised level X r ( N )  for even N is defined to be 

X r ( N )  = ( N / ~ T )  ln(AdIArI) (4) 
where the A, ( < A o ,  r = 0, 1,2,  . . .) are the transfer matrix eigenvalues for a strip of 
width N under the periodic boundary conditions. For odd N, the identity representa- 
tion (see below) does not appear in the operator content. Accordingly, we define 

c N  
12 271. 

X , ( N )  =-+-(-Nf-lnIA,\) 

where c = 1,  and f is the bulk free energy per site. As N + CO, X,( N )  approaches to 
the scaling dimension of the corresponding operator (Cardy 1986). Each level is 
classified by the spin-reversal quantum number R (=*l) ,  the sublattice interchange 
parity R’( =*l ) ,  and the spin S. When R ’ =  -1 ,  the momentum P and the spin S are 
related by 

P = T +  (271./ N ) S  (6) 
(see I, Kim and Pearce 1987). 

Table 1 shows identifications of several levels in the sectors (R, R’) = ( 1 ,  l ) ,  (1,  - 1 )  
and ( - 1 , l )  for N even when A = 7 ~ / 1 2  ( X , =  8/15). For even N, the ( -1 ,  - 1 )  sector 
is degenerate with the ( - 1 , l )  sector. This degeneracy originates from the two- 
dimensional irreducible representation of the group D4. The first columns are the 
spins and the second columns are the values of X ,  (12). To each non-zero spin level, 
there is a degenerate level with the opposite sign of the spin. Only positive spins are 
displayed. The third columns are the extrapolated values of the sequences X , ( N ) .  
Since our sequences are rather short, we fit the last three data to the form 

X,( N )  = X + (7) 
to obtain the extrapolated values shown in the table. This procedure is justified since 
the asymptotic form of Xr( N )  is expected to be of the form (7) (Cardy 1986, Reinicke 
1987). For some levels, the data for N = 8 (7) for the even (odd) N sequences do not 
reflect the asymptotic behaviour and give unphysical results. In such cases, we leave 
the third columns blank. The operator contents of the AT and the M H S  models are 
described in terms of the irreducible representations (A,  d) of the two commuting c = 1 
Virasoro algebras. There are two types of representations. For the first type, the 
conformal dimensions A and A are constant along the multicritical line. The second 
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Table 1. Spin, normalised level at N = 12, extrapolated value of even N sequence and 
level identification for the low-lying levels of the M H S  model at A = 7 n / 1 2  (XT=8/15) ,  
for the sectors ( R , R ' ) = ( l , l ) ,  (1,-1) and (-1, l ) = ( - l , - l ) .  

Level identification 

( R ,  R')  S x, (12) Extrapolated Representation Exact 

i1,1) 0 
0 
0 
0 
0 
1 
1 
2 
2 
2 

0.5348 
1.964 
2.012 
2.254 
2.750 
1.627 
3.094 
2.165 
2.579 
2.687 

0.533 

2.01 
2.15 
2.62 
1.56 
3.02 
2.05 
2.54 
2.54 

- x2.0 

Xo, I 
(131) 
X4.0 
x*,o + 1 + 1 
x2,0+ 1 + 0 
xo,l + 1 + 0 
( 0 + 2 , 0 )  
x2.1 

x, , ,+2+0 

053 

2.13 
2.53 
1.53 

1.875 
2 

2.875 

(1, -1) 0 
0 
0 
1 
1 
1 
2 
2 

0.1321 
1.225 
2.191 
1.150 
2.140 
2.447 
2.148 
2.467 

0.133 
1.20 
2.14 
1.14 
2.04 
2.30 

2.32 
- 

X1,O 

XI,,+ 1 + 1 

XIJ 
x3.,+ 1 + 0  

x3,0 

+ 1 + 0 

+ 2 + 0 
+ 2 + 0 

0.13 
1.2 
2.13 
1.13 
2.0083 
2.2 
2.13 
2.13 

(-191) 0 
=(-1,-1) 0 

0 
1 
1 
1 
2 
2 

0.1244 
1.138 
2.242 
1.175 
2.163 
2.326 
2.303 
2.641 

0.125 
1.125 
2.14 
1.13 

2.20 
2.187 
- 

(L 16, L) 16 0.125 
(2 16, 2) 16 1.125 
(A+ 1, A +  1)  2.125 
(A+ 1, A, 1.125 

2.125 
2.125 

(A+ 2, A) 2.125 
( A + 2 ,  A) 2.125 

is of the form (A,  A) = (h,,, hfl,-,) where 

h , ,  =-[ 1 ( y ) " 2 n  XT + ($)"2m]2. 
4 

Forthe latter, the scaling dimension is X,, = XTn2/4+ m2/XTand the spin is S,, = nm. 
To each ( A ,  A), there corresponds a set of levels A + + r + P (r, F = 0, 1,2, . . .) whose 
degeneracy is determined by the character formula (Baake et a1 1987, Yang 1987). In 
the fourth columns of table 1, we list the conjectured identification of the levels in 
terms of the irreducible representations. We show (A, A) and Xn,, for the primary 
operators of the first and second type, respectively. The descendants are denoted as 
( A +  r, &+ P) and X,,, + r + F, respectively. The last columns of table 1 are the exact 
scaling dimensions of the levels identified. For other values of A, we find the same 
identifications with similar accuracies. Baake et al (1987) have found 13 sectors 
for the AT model. From table 1, we find that the (R, R ' )  = (1, l ) ,  (1, -1) and (-1, *l) 
sectors of the M H S  model correspond to the sectors d +  F, V+ '3 and X, respectively, 
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of Baake etal. Our result exactly matches that of the AT model with the periodic 
boundary condition. The anisotropy operator discussed in table l ( a )  of I should be 
related to the S = 2, X = 2 level in the (1, 1) sector and hence is not primary. 

Next, we consider the odd N sequences. Table 2 shows our identifications of 
several levels in the sectors (1, l),  (1, -1) (-1, 1) and (-1, -1) for A = 7 ~ / 1 2  and N 
odd. Notations are the same as in table 1. Here, half-integer spins appear in the 
R ’ =  -1  sectors since N is odd. For extrapolation, we use the N = 7,9,11 sequences. 
From table 2 we identify the four sectors (1, l ) ,  (1,-1), (-1, 1) and (-1, -1) as the 
sectors 2, X, 8 and 9, respectively, of Baake et al. These constitute the operator 
content of the AT model with the boundary condition uN+, = - U , ,  s ~ + ~  = s, where u 
and s are the Ising spin variables of the AT model (Yang 1987, Baake et al 1987). 

In summary, we find numerically that the transfer matrix spectra of the multicritical 
MHS model are exactly the same as those of the multicritical AT model. Thus apart 
from the leading non-universal bulk free energy contributions the partition functions 
on a finite torus in the continuum limit are exactly the same for the MHS and the AT 

models as long as X ,  is the same in the two models. Along the multicritical lines, X ,  
Table 2. Spin, normalised level at N = 11, extrapolated value of odd - N  sequence and 
level identification for the low-lying levels of the M H S  model at A = 7 ~ / 1 2  (XT=8/15), 
for the sectors (R, R’ )=( l ,  l) ,  (1, -l),  (-1,l)  and (-1, -1). The daggered entry is an 
exact doublet. 

~~ 

Level identification 

(R, R’) S XA11) Extrapolated Representation Exact 

(1 , l )  0 
0 
0 
1 
1 
1 
2 
2 

(1, -1) 

0 
0 

0 
1 
1 
2 
I 

I 

I 

I 

(-1, -1) I 
I 
I 
I 
s 
I 

0.1251 
1.144 
2.292 
1.186 
2.169 
2.389 
2.344 
2.800 

0.6305 
1.703 
2.755 
2.940 
1.645 
1.849 

0.46996 
2.074t 

2.698 
1.05 1 
1.566 
2.512 

0.6125 
1.642 
2.899 
2.930 
1.820 
1.860 

0.125 
1.127 
2.18 
1.14 

2.21 2.131 

0.625 
1.64 

2.71 2.671 
1.74 

0.4688 
2.02 

2.54 
1.01 
1.50 
2.47 

0.603 
1.61 
2.17 
2.81 
1.73 
1.74 

0.125 
1.125 
2.125 
1.125 
2.125 
2.125 
2.125 
2.125 

0.625 
1.625 
2.625 
2.625 
1.625 
1.625 

0.468 75 
2.002 083 

2.468 75 

1.468 75 
2.002 083 

1.002 os3 

0.602 os3 

2.602 os3 

1.602 os3 

1.602 083 

2.668 15 

1.668 15 
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varies continuously in the range $s X T s  3 for the MHS model as given by (7) compared 
with i s  X T s  $ for the AT model on a lattice. It is interesting to note that the special 
point M discussed in Pearce (1985, 1987) and in I is the supersymmetric point with 
X T = f  (Yang and Zheng 1987, Baake et a1 1987). 
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